Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

New model for vector-borne disease
The model enables a better understanding of the impact of biting midges.

Model can distinguish between midge and animal movement

A new model that can determine vectors for bluetongue and Schmallenberg virus has been developed by scientists at The Pirbright Insitute. Researchers hope the model could be applied to other diseases to help better inform control strategies.

Writing in PLOS Computational Biology, researchers use the model to establish that 90 per cent of bluetongue transmission between farms is a result of midge dispersal, while for Schmallenberg it is 98 per cent.

“Previous models used to study the 2007 bluetongue outbreak in the UK were able to show how the disease spread, but were not sophisticated enough to determine the primary route of transmission which is crucial in helping to bring an outbreak under control quickly,” explained Dr Simon Gubbins, group leader for transmission biology at the Institute.

“Our new model is able to distinguish between disease that is spread through midge movement and through animal movement. For both viruses, we have shown that insect movements account for the majority of spread between farms. Animal movements play an important role in introducing disease to new areas, but they cannot sustain an epidemic on their own.

“Importantly, the approach we have established for BTV and SBV could also be applied to other diseases spread by biting midges”.

Bluetongue virus and Schmallenberg virus infect cattle and sheep, causing huge economic losses to farmers across the world. Both diseases are vector-borne, meaning they need another organism to aid transmission between animals. Until now, however, it was not clear whether biting midges or the movement of animals made the most significant contribution to transmission.

Researchers say that by enabling a better understanding of the impact of biting midges and animal movement in transmission, the new model will help ensure outbreak control strategies and procedures are better informed.

It may also change the way livestock movements are controlled and will enable more accurate predictions about the spread of an outbreak and where it would be best to vaccinate.

Become a member or log in to add this story to your CPD history

Submissions open for BSAVA Clinical Research Abstracts 2026

News Story 1
 The BSAVA has opened submissions for the BSAVA Clinical Research Abstracts 2026.

It is an opportunity for applicants to present new research on any veterinary subject, such as the preliminary results of a study, discussion of a new technique or a description of an interesting case.

They must be based on high-quality clinical research conducted in industry, practice or academia, and summarised in 250 words.

Applications are welcome from vets, vet nurses, practice managers, and students.

Submissions are open until 6 March 2026. 

Click here for more...
News Shorts
Survey seeks ruminant sector views on antimicrobial stewardship

A new survey is seeking views of people working in the UK ruminant sector on how to tackle the challenge of demonstrating responsible antibiotic stewardship.

Forming part of a wider, collaborative initiative, the results will help identify the types of data available so that challenges with data collection can be better understood and addressed.

Anyone working in the UK farming sector, including vets and farmers,is encouraged to complete the survey, which is available at app.onlinesurveys.jisc.ac.uk