Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Scientists print living tissue structures
3D printed ear
Completed ear structure printed with the Integrated Tissue-Organ Printing system.

Technology could be used to replace ears, bone and muscle 

Living tissue structures can be printed to replace injured or diseased tissue in humans, research by the Wake Forest Baptist Medical Centre has found.

Using a custom-designed 3D printer, the scientists produced ear, bone and muscle structures. When implanted in animals, the structures grew into functional tissue and developed a system of blood vessels.

The study, published in Nature Biotechnology, suggests that the structures have the right size, strength and function for use in humans.

“This novel tissue and organ printer is an important advance in our quest to make replacement tissue for patients,” said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine (WFIRM) and senior author on the study.

“It can fabricate stable, human-scale tissue of any shape. With further development, this technology could potentially be used to print living tissue and organ structures for surgical implantation.”

The team
developed the Integrated Tissue and Organ Printing System (ITOP) over 10 years. It deposits both bio-degradable, plastic-like materials to form the tissue “shape” and water-based gels that contain the cells. A strong, temporary outer structure is then formed on the outside.

To keep the cells alive, the scientists optimised the water-based “ink” that holds the cells so that it promoted cell health and growth. They also printed a lattice of micro-channels throughout the structures. These allow nutrients and oxygen from the body to diffuse into the structures and keep them live while they develop a system of blood vessels.

The scientists say that the ITOP system can also use data from CT and MRI scans to “tailor-make” tissue for patients. For a patient missing an ear, for example, the system could print a matching structure.

The team are now conducting further studies to measure longer-term outcomes.

Image (C) Wake Forest Institute for Regenerative Medicine

Become a member or log in to add this story to your CPD history

FIVP launches CMA remedies survey

News Story 1
 FIVP has shared a survey, inviting those working in independent practice to share their views on the CMA's proposed remedies.

The Impact Assessment will help inform the group's response to the CMA, as it prepares to submit further evidence to the Inquiry Group. FIVP will also be attending a hearing in November.

Data will be anonymised and used solely for FIVP's response to the CMA. The survey will close on Friday, 31 October 2025. 

Click here for more...
News Shorts
CMA to host webinar exploring provisional decisions

The Competition and Markets Authority (CMA) is to host a webinar for veterinary professionals to explain the details of its provisional decisions, released on 15 October 2025.

The webinar will take place on Wednesday, 29 October 2025 from 1.00pm to 2.00pm.

Officials will discuss the changes which those in practice may need to make if the provisional remedies go ahead. They will also share what happens next with the investigation.

The CMA will be answering questions from the main parties of the investigation, as well as other questions submitted ahead of the webinar.

Attendees can register here before Wednesday, 29 October at 11am. Questions must be submitted before 10am on 27 October.

A recording of the webinar will be accessible after the event.